Frontiers of Network Science Fall 2023

Class 12: Degree Correlations part II (Chapter 7 in Textbook)

Boleslaw Szymanski

based on slides by
Albert-László Barabási
and Roberta Sinatra

Structural cut-off

High assortativity \rightarrow high number of links between the hubs.

If we allow only one link between two nodes, we can simply run out of hubs to connect to each other to satisfy the assortativity criteria.
Number of edges between the set of nodes with degree k and degree k^{\prime} :

$$
E_{k k^{\prime}}=\boldsymbol{e}_{k k^{\prime}} \frac{\langle\boldsymbol{k}\rangle N}{\text { This represents the number of edges }}
$$

Maximum number of edges between the two groups:

If we only have simple edges, we cannot have more links between the two groups, than if we connect every node with degree k to every node with degree k^{\prime} once.
There cannot be more links between the two groups, than the overall number of edges joining the nodes with degree k, or k^{\prime}

This is true even if we allow multiple edges.

Structural cut-off

$$
\begin{aligned}
& E_{k k^{\prime}}=e_{k k^{\prime}}\langle k\rangle N \\
& m_{k k^{\prime}}=\min \left\{k N_{k}, k^{\prime} N_{k^{\prime}}, N_{k} N_{k^{\prime}}\right\}
\end{aligned}
$$

The ratio of $\mathrm{E}_{\mathrm{k} \mathrm{k}^{\prime}}$ and $\mathrm{m}_{\mathrm{kk}^{\prime}}$ has to be ≤ 1 in the physical region!

$$
r_{k k^{\prime}}=\frac{E_{k k^{\prime}}}{m_{k k^{\prime}}} \leq 1
$$

k
$\longrightarrow \quad r_{k_{s} k_{s}}=1$ defines the structural cut-off

Structural cut-off for uncorrelated networks

Uncorrelated networks:

$$
m_{k k^{\prime}}=\min \left\{k N_{k}, k^{\prime} N_{k^{\prime}}, N_{k} N_{k^{\prime}}\right\}
$$

$$
m_{k_{s} k_{s}}=k_{s} N_{k_{s}}=k_{s} N p_{k_{s}}
$$

$$
m_{k_{s} k_{s}}=N_{k_{s}}^{2}=N^{2} p_{k_{s}}^{2}
$$

$$
\begin{aligned}
& e_{k k^{\prime}}=\boldsymbol{q}_{\boldsymbol{k}} q_{k^{\prime}}=\frac{k_{k}^{\prime} p_{k} p_{k^{\prime}}}{\langle\boldsymbol{k}\rangle^{2}} \longrightarrow r_{k k^{\prime}}=\frac{E_{k k^{\prime}}}{m_{k k^{\prime}}}=\frac{\langle\boldsymbol{k}\rangle N\left(e_{k k^{\prime}}\right)}{m_{k k^{\prime}}} \\
& r_{k_{s} k_{s}}=\frac{\langle\boldsymbol{k}\rangle N \cdot \boldsymbol{k}_{s}^{2} \cdot p_{k_{s}}^{2}}{\langle\boldsymbol{k}\rangle\left(k_{s} p_{k_{s}} N\right.}=\frac{k_{s} p_{k_{s}}}{\langle\boldsymbol{k}\rangle}=q_{k_{s}}<1 \quad \forall k_{s} \\
& r_{k_{s} k_{s}}=\frac{\langle\boldsymbol{k}\rangle N \cdot \boldsymbol{k}_{s}^{2} \cdot p_{k_{s}}^{2}}{\langle\boldsymbol{k}\rangle^{2}\left(N^{2} \cdot p_{k}^{2}\right)}=\frac{\boldsymbol{k}_{s}^{2}}{\langle\boldsymbol{k}\rangle N} \longrightarrow \quad k_{s}(N)=(\langle\boldsymbol{k}\rangle N)^{1 / 2}
\end{aligned}
$$

$\boldsymbol{k}_{s}(N)$ represents a structural cutoff:
one cannot have nodes with degree larger than $k_{s}(N)$,
\rightarrow if there are nodes with $k>k_{s}(N)$ we cannot find sufficient links between the highly connected nodes to maintain the neutral nature of the network.

Solution:

(a) Introduce a structural cutoff (i.e. do not allow nodes with $k>k_{s}(N)$
(b) Let the network become more dissasortative, having fewer links between hubs.

Example: Degree sequence introduces disassortativity

Scale-free network generated with the
configuration model ($\mathrm{N}=300, \mathrm{~L}=450, \gamma=2.2$).

The measured $r=-0.19!\rightarrow$ Dissasortative!

Red hub: 55 neighbors.
Blue hub: 46 neighbors.
Let's calculate the expectation number of links between red node ($k=55$) and blue node ($k=46$) for uncorrelated networks!

Here $N_{55}=N_{46}=1$, hence $m_{55,46}=1$ so $r_{55,46}=E_{55,46}$

$$
E_{55,46}=\langle k\rangle N \cdot e_{55,46}=900 \cdot \frac{55 \frac{1}{300} \cdot 46 \frac{1 k}{300}}{3^{2}} \approx 2.8>1
$$

The largest nodes have $\mathrm{k}_{\mathrm{nn}} \ll \mathrm{k}_{\mathrm{nn}}>$

The effect is particularly clear for $\mathrm{N}=10, \mathbf{0 0 0}$:

The red curves are those of interest to us: one can see that a clear dissasortativity property is visible in this case.

Natural cutoffs in scale-free networks

All real networks are finite \rightarrow let us explore its consequences.
\rightarrow We have an expected maximum degree, $\mathrm{K}_{\text {max }}$

Estimating $K_{\text {max }}$

$$
\begin{gathered}
\int_{K_{\max }}^{\infty} P(k) d k \approx \frac{1}{N} \quad \begin{array}{l}
\text { Why: the probability to have a node larger than } K_{\max } \text { should not } \\
\text { exceed the prob. to have one node, i.e. } 1 / N \text { fraction of all nodes }
\end{array} \\
\int_{K_{\max }}^{\infty} P(k) d k=(\gamma-1) K_{\min }^{\gamma-1} \int_{K_{\max }}^{\infty} k^{-\gamma} d k=\frac{(\gamma-1)}{(-\gamma+1)} K_{\min }^{\gamma-1}\left[k^{-\gamma+1}\right]_{K_{\max }}^{\infty}=\frac{K_{\min }^{\gamma-1}}{K_{\max }^{\gamma-1}} \approx \frac{1}{N} \\
\text { Natural cutoff: } \quad K_{\max }=K_{\min } N^{\frac{1}{\gamma-1}}
\end{gathered}
$$

Structural cut-off for uncorrelated networks

Structural cutoff: $k_{s}(N) \sim(\langle k\rangle N)^{1 / 2} \quad e_{k k^{\prime}}=q_{k} q_{k^{\prime}}=\frac{k k^{\prime} p_{k} p_{k^{\prime}}}{\langle k\rangle^{2}}$
Natural cut-off: $\quad k_{\max }(N) \sim N^{\frac{1}{\gamma-1}}$
$\boldsymbol{\gamma}=3: \mathrm{k}_{\mathrm{s}}(\mathrm{N})$ and $\mathrm{k}_{\max }(\mathrm{N})$ scale the same way, i.e. $\sim N^{1 / 2}$.
$\mathrm{\gamma}<3: \quad k_{\max }>k_{s} \longrightarrow$
The size of the largest hub is above the
$\gamma<3 . \quad k_{\max }>k_{s} \longrightarrow$ structural cutoff, which means that it cannot have enough links to the other hubs to maintain its neutral status.
\rightarrow disassortative mixing
\rightarrow a randomly wired network with $\gamma<3$ will be
(a) dissasortative
(b) Or will have to have a cutoff at $k_{s}(N)<k_{\max }(N)$

Example: introducing a structural cut-off

$$
1-C D F=P\left(k^{\prime}>k\right)=1-\sum_{k^{\prime}}^{k} p_{k^{\prime}}
$$

The largest nodes have $\mathrm{k}_{\mathrm{nn}}{ }^{\sim}<\mathrm{k}_{\mathrm{nn}}>$

The effect is particularly clear for $\mathbf{N}=10,000$:

A clear case of neutral assortativity property is visible in this case thanks to imposing structural cut-off.

DIRECTED NETWORKS

DIRECTED NETWORKS

Pearson-correlation for directed networks

MULTIPOINT DEGREE CORRELATIONS

$P(k)$: not enough to characterize a network

Large degree nodes tend to connect to large degree nodes
Ex: social networks

Large degree nodes tend to connect to small degree nodes
Ex: technological networks

MULTIPOINT DEGREE CORRELATIONS

Measure of correlations:
$P\left(k^{\prime}, k^{\prime \prime}, \ldots k^{(n)} \mid k\right)$: conditional probability that a node of degree k is connected to nodes of degree $k^{\prime}, k^{\prime \prime}, \ldots$

Simplest case:
$P\left(k^{\prime} \mid k\right)$: conditional probability that a node of degree k^{\prime} is connected to a node of degree k

2-POINTS: CLUSTERING COEFFICIENT

- $\mathrm{P}\left(\mathrm{k}^{\prime}, \mathrm{k}^{\prime \prime} \mid \mathrm{k}\right)$: cumbersome, difficult to estimate from data

Do your friends know each other?
\# of links between neighbors

$$
C(i)=工 \quad \frac{k(k-1)}{2}
$$

CORRELATIONS: CLUSTER SPECTRUM

- Average clustering coefficient
= average over nodes with very different characteristics

$$
\bar{C}=\frac{1}{N} \sum_{i} C(i)
$$

EMPIRICAL DATA FOR REAL NETWORKS

15

CLUSTERING COEFFICIENT OF THE BA MODEL

Reminder: for a random graph we have:

$$
C_{\text {rand }}=\frac{\langle k\rangle}{N} \sim N^{-1}
$$

But not slow enough...

[^0]graph,
$$
C_{r a n d}=\frac{\langle k\rangle}{\mathrm{N}}
$$

Clustering coefficient versus size of the Barabasi-Albert (BA) model with $<\mathrm{k}>=4$, compared with clustering coefficient of random

MODULARITY IN THE METABOLISM

THE MEANING OF C(N)

Existence of a high degree of local modularity in real networks, that is not captured by the current models.
$C(N)-$ the average number of triangles around each node in a system of size N.
The fact that $\mathrm{C}(\mathrm{N})$ does not decrease means that the relative number of triangles around a node remains constant as the system size increases-in contrast with the ER and BA models, where the relative number of triangles around a node decreases. (here relative means relative to how many triangles we expected if all triangles that could be there would be there)

But C has some unexpected behavior, if we measure $C(k)-$ the average clustering coefficient for nodes with degree k.

CORRELATIONS: CLUSTER SPECTRUM

- Average clustering coefficient
= average over nodes with very different characteristics

$$
\bar{C}=\frac{1}{N} \sum_{i} C(i)
$$

- Clustering spectrum:
putting together nodes which have the same degree
(link with hierarchical structures)

$C(k)$ for the ER and BA models

Erdos-Renyi
Barabasi-Albert
$C_{\text {rand }}=\boldsymbol{p}=\frac{\langle\boldsymbol{k}\rangle}{\boldsymbol{N}}$

This is not true, however, for real networks. Let us look at some empirical data.

HIERARCHICAL NETWORKS

Society

Human communication

The electronic skin

Cellular networks:

GENOME

protein-gene interactions
 PROTEOME

 protein-protein interactions
METABOLISM

Bio-chemical reactions

Peltur

A GENEREGULATORY NETWORK

BIOLOGICAL SYSTEMS

Protein-protein interaction

Regulatory networks

SCALING OF THE CLUSTERING COEFFICIENT C(k)

The metabolism forms a hierarchical network.

ABSENCE OF HIERARCHY

Geographically localized networks

SUMMARY OF EMPIRICAL RESULTS

$$
C(k) \sim k^{-\beta} \quad C(k) \text { indep. of } k
$$

But there is a deeper issue as stake, that need to consider- that of modularity.

HIERARCHICAL EXPONENT

All models predict $\quad C(k) \sim k^{-1}$

Is the exponent universal?

Or could we have for example: $\quad C(k) \sim k^{-\beta}$

STOCHASTIC VERSION

Randomly pick a p fraction of the newly added nodes and connect each of them independently to the nodes belonging to the central module.
-use preferential attachment to decide, to which central node the selected nodes link to.
-at the next level p^{2} fraction will link, back, then $p^{3}, \ldots p^{i}$

SUMMARY

1. Scale-free

$$
\gamma=1+\frac{\ln 5}{\ln 4}=2.161
$$

2. Clustering coefficient independent of \mathbf{N}

$$
C(N)=\text { const }
$$

3. Clustering

 spectrum$$
C(k) \sim k^{-1}
$$

In real systems $C(k)$ does not always decrease as a power law. What matters, however, that it decreases, i.e. it is not independent of k.

THE BIG PICTURE

Hierarchy is a new rather generic network property.

What does happen in real systems? Is a prediction that all systems with $\gamma<3$ should be automatically dissasortative, or have a cutoff - is this the case?
Let's see: www, $\gamma=2.1$, no cutoff, dissasortative NICE Actor network, no cutoff, but it is ASSORTATIVE (how is this possible?).
Internet: $\gamma=\mathbf{2 . 5}$, disassortative, cutoff , NICE

Networks with $\gamma<3$ don't have to be assortative:

Lets suppose we have a neutral network. High assortativity means a high degree nodes neighbors have high average degree. If we want to make it assortative we have to increase the degree of the neighbors of hubs. Even if the degree of the top neighbors cannot be increased because we used up all of the hubs, the low degree neighbors still can be replaced with higher ones, thus making the network assortative.
Anyway, the social networks checked (actor network, coauthorship network) have cut-offs according to Newman and Stanley.
http://samoa.santafe.edu/media/workingpapers/00-07-037.pdf
http://viseu.chem-eng.northwestern.edu/site media/publication pdfs/Amaral-2000-
Proc.NatI.Acad.Sci.U.S.A.-97-11149.pdf

Static model used for examples

- Start with N unconnected nodes.
- Assign a w_{i} weight to each node i.
- Randomly select two nodes with probability proportional to w_{i}. Connect these nodes. Repeat Ltimes.

If $w_{i}=\frac{1}{i^{\alpha}} \rightarrow p_{k} \sim k^{-1-1 / \alpha}$
Upper cut-off may be added by introducing $\mathrm{i}_{0}: w_{i}=\frac{1}{\left(i+i_{0}\right)^{\alpha}}$
For large N this should be equivalent to the configuration model.

Static model used for examples

- Start with N unconnected nodes.
- Assign a w_{i} weight to each node i.
- Randomly select two nodes with probability proportional to w_{i}. Connect these nodes. Repeat Ltimes.

If $w_{i}=\frac{1}{i^{\alpha}} \rightarrow p_{k} \sim k^{-1-1 / \alpha}$
Upper cut-off may be added by introducing $\mathrm{i}_{0}: w_{i}=\frac{1}{\left(i+i_{0}\right)^{\alpha}}$
For large N this should be equivalent to the configuration model.

MALLOY-REED CRITERIA: THE EXISTENCE OF A GIANT COMPONENT

A giant cluster exists if each node is connected to at least two other nodes.
The average degree of a node i linked to the GC, must be 2, i.e.

$$
\begin{aligned}
& <k_{m} \mid i \leftrightarrow j>=\sum_{k_{m}} k_{m} P\left(k_{m} \mid i \leftrightarrow j\right)=2 \\
& P\left(k_{m} \mid i \leftrightarrow j\right)=\frac{P\left(k_{m}, i \leftrightarrow j\right)}{P(i \leftrightarrow j)}=\frac{P\left(i \leftrightarrow j \mid k_{m}\right) P\left(k_{m}\right)}{P(i \leftrightarrow j)}
\end{aligned}
$$

$P\left(k_{m} \mid i<->j\right)$: joint probability that a node has degree k_{m} and is connected to nodes i and j.
For a randomly connected network (does NOT mean random network!) with $\mathrm{P}(\mathrm{k})$:

$$
\begin{gathered}
P(i \leftrightarrow j)=\frac{2 L}{N(N-1)}=\frac{<k>}{N-1} \quad P\left(i \leftrightarrow j \mid k_{m}\right)=\frac{k_{m}}{N-1} \quad \begin{array}{l}
\begin{array}{l}
\text { i can choose betwee } \\
\text { link toe each with pre } \\
\text { I can try } \mathrm{k}_{\mathrm{t}} \text { times. }
\end{array} \\
\sum_{k_{m}} k_{m} P\left(k_{m} \mid i \leftrightarrow j\right)=\sum_{k_{m}} k_{m} \frac{P\left(i \leftrightarrow j \mid k_{m}\right) P\left(k_{m}\right)}{P(i \leftrightarrow j)}=\sum_{k_{m}} k_{m} \frac{k_{m} P\left(k_{m}\right)}{<k>}=\frac{\sum_{k_{m}} k_{m}^{2} P\left(k_{m}\right)}{<k>} \\
K \equiv \frac{<k^{2}>}{<k>}=2 \quad \begin{array}{l}
k>2: \text { a giant cluster exists } \\
k<2: \text { many disconnected clusters }
\end{array}
\end{array} .
\end{gathered}
$$

Apply the Malloy-Reed Criteria to an Erdos-Renyi Network

Discrete Formulation

-binomial distribution-

Continuum Formulation

-Poisson distribution-

$$
P(k)=e^{-<k>} \frac{\left\langle k>^{k}\right.}{k!}
$$

$$
\left\langle k^{2}>=<k>(1+<k>)\right.
$$

$$
\sigma_{k}=\left(\left\langle k^{2}\right\rangle-\langle k\rangle^{2}\right)^{1 / 2}=\langle k\rangle^{1 / 2}
$$

Apply the Malloy-Reed Criteria to an Erdos-Renyi Network

A giant cluster exists if each node is connected to at least two other nodes.

$$
\kappa \equiv \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=2
$$

$K>2$: a giant cluster exists;
$K<2$: many disconnected clusters;

$$
\begin{aligned}
& \langle k\rangle=\langle k\rangle \\
& \left\langle k^{2}\right\rangle=\langle k\rangle(1+\langle k>) \\
& \sigma_{k}=\left(\left\langle k^{2}\right\rangle-\left\langle k>^{2}\right)^{1 / 2}=\langle k\rangle^{1 / 2}\right.
\end{aligned} \quad \kappa \equiv \frac{\left\langle k^{2}\right\rangle}{\langle k>}=\frac{\langle k\rangle(1+\langle k\rangle)}{\langle k\rangle}=1+\langle k\rangle=2
$$

Malloy-Reed; Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

[^0]: Konstantin Klemm, Victor M. Eguiluz,

